воскресенье, 27 марта 2016 г.

THE THEOREM OF PARALLEL SETS (WORLDS)

The theorem of parallel sets (worlds)

Suppose there are two infinite sets A and B, with a common unit of discreteness (e.g. .consisting of integers). A successor function is initially defined on both sets, which is the basic function. Suppose that there exists a reflection A to B along an arbitrary, but always on the entire set, rule. Mapping does not change the sequence. Such sets are said to be parallel.

Let an elementary rule 1 be set on set A, which establishes a relationship between some elements of set A, and there is an infinite number of examples of application of this rule. The rule  is consistent on the whole set A, and is due to the laws and properties of the set, i.e., the examples are not random.
Reflections of elements A (bound by Rule 1), on B will be the elements of set B, and will be bound with each other by an elementary rule 2, which can differ from Rule 1. Rule 2 will be self-sufficient for set B, i.e. it is formulated through a previously defined functions and rules on set B. And one of the examples  of rule 2 will consist of consecutive  members of the set.

Proof
If  B is a mapping of A, then A is a mapping of B too. Examples of rule 1 on set A are not accidental. Hence, they may not be reflections of random examples 2 on set B. Therefore, two examples are not random and are bound by a certain rule 2.

If A is a reflection of B, then rule 2 should not be explained by rules and functions of A. Therefore, Rule 2 will be self-sufficient for set B, that is, it can be formulated only in terms of functions and rules of B.

The base sequence function is initially defined on set B. Therefore, Rule 2 should be formulated through the sequence function, i.e., on the example of successive  members.

Corollary 1 (Gödel's incompleteness theorem)
Some functions and rules are initially defined on set B . However, any rules that depend on set A and the reflection function A on B can be formulated through them. But any such rule is to be self-sufficient for set B. Thus, the same rules and axioms can give rise to any rules on set B . Consequently, these new rules are not based only on the existing axioms. And at the same time, on the basis of these axioms one cannot prove that the new rules are not based only on them, because it would violate the condition of self-sufficiency of new rules on set  B.

Corollary 2 (Fermat's Last Theorem)
Let B be an infinite set of integers x and A - an infinite set, each element of which is equal to xn. A and B are parallel sets. On set A rule 1 is valid : an + bn = cn. If there is one example of this rule, there exists an infinite number of examples. Therefore there is an infinite number of reflections on set B. For example, if n = 2 on set A: 9 + 16 = 25, and on set B: 3 + 4 = 5 there is rule 2 by the theorem of parallel sets, which binds all mappings on set B, i.e. binds all roots of the equation an + bn = cn in nonzero whole numbers. And one example is to consist of a sequence of elements.

And, therefore, on the contrary, if there are no solutions in successive elements, then there is no any solutions at all. For n> 2, one can easily show that there are no roots of the equation in the whole serial numbers. Consequently, there are no solutions in non-zero integer numbers in general.

Corollary 3 (Physics)
Let worlds of  all observers be parallel sets that are mutually reflected. Each world is self-sufficient.
Reflections can be different and produce different rules. Since the same phenomenon can be the manifestation of an electrostatic force for one observer, it can be the manifestation of a magnetic force for the other.

But the basic function of parallel worlds is a successor function, and no reflection changes the sequence of events. Therefore, mapping can change everything (space, time, etc.), but the order of events (theory of relativity) will always remain the same for all observers. And any law can be illustrated by the example of the sequence of events between which there are no other events, there is nothing (quantum mechanics).

Corollary 4 (Philosophy)
Parallel sets can be combined into subsets. Our world is one of these subsets. It is a reflection of other sets and worlds, but at the same time is self-sufficient. This leads to contradictory Сorollary 1.
Philosophers found contradictory essence of all elementary propositions of our world long ago:

«Then let us say that, and we may add, as it appears, that whether the one is or is not, the one and the others in relation to themselves and to each other all in every way are and are not and appear and do not appear.» (Plato, «Parmenides»)









Теорема о параллельных множествах (мирах)
Пусть существуют два бесконечных множества A и B с общей единицей дискретности (например, состоящие из целых чисел). На обоих множествах изначально определена функция следования, которая является базовой функцией. Пусть существует отображение A в B по произвольному, но неизменному на всем множестве, правилу. Отображение не меняет порядок следования. Такие множества назовем параллельными.
Пусть на множестве A можно установить определенное элементарное правило 1, которое устанавливает связь между некоторыми элементами множества A, и существует бесконечное количество примеров применения этого правила. Правило неизменно на всем множестве А и обусловлено закономерностями и свойствами множества, то есть примеры не являются случайными.
Отображения элементов А, связанных правилом 1, на B будут являться элементами множества B и будут связаны между собой, элементарным правилом 2, которое может отличаться от правила 1. Правило 2 будет самодостаточным для множества B. То есть сформулировано через ранее определенные на множестве B функции и правила. И один из примеров правила 2 будет состоять из следующих друг за другом членов множества.
Доказательство
Если B - отображение A, то A -  отображение B тоже. Примеры правила 1 на множестве A не случайны. Следовательно, они не могут быть отображениями случайных примеров 2  на множестве B. Следовательно, примеры 2 не случайны и связаны определенным правилом 2.
Если A является отражением B, то правило 2 не должно обосновываться правилами и функциями множества A. Следовательно, правило 2 будет самодостаточным для множества B, то есть его можно сформулировать только через функции и правила множества B.
На  множестве B изначально определена базовая функция следования. Следовательно,  правило 2 должно быть сформулировано через функцию следования, то есть на примере последовательных членов множества.
Следствие 1 (теорема о неполноте Гёнделя)
На множестве В определены некоторые функции и правила изначально. Однако через них могут быть сформулированы любые правила, которые зависят от множества А и функции отображения A на B. Но каждое такое правило должно быть самодостаточным для множества В. Таким образом, на множестве В одни и те же правила и аксиомы, могут порождать любые правила.  Следовательно, эти новые правила не основываются   только на существующих аксиомах. И одновременно, исходя из этих аксиом, нельзя доказать, что новые правила основаны не только на них, потому что это нарушало бы условие самодостаточности новых правил на множестве В. 
Следствие 2 (Великая теорема Ферма)
B - бесконечное множество целых чисел x. A - бесконечное множество, каждый элемент которого равен xn . A и B - параллельные множества На множестве A действует элементарное правило 1 : an+bn=cn .  Если существует один пример для этого правила, то существует и бесконечное количество примеров.  Следовательно существует бесконечное количество отображений на множество B. Например, при n=2 на множестве A:  9+16=25, а на множестве B: 3+4=5 По теореме параллельных множеств существует правило 2, которое связывает все отображения на множестве B, то есть связывает все корни уравнения  an+bn=cn  в целых ненулевых числах. И один из примеров должен состоять из последовательных элементов.
И, следовательно, наоборот, если нет решения в последовательных элементах, то нет и любого решения. Для n>2  легко показать, что не существуют корней уравнения в целых последовательных числах. Следовательно, нет решений в целых ненулевых числах вообще.
Следствие 3 (физика)
Пусть миры всех наблюдателей – параллельные множества, которые взаимно отображаются. Каждый мир – самодостаточен.
Отображения могут быть разными и порождать разные правила. Так одно и то же явление для одного наблюдателя может быть проявлением электростатической силы, а для другого – магнитной.
Но базовой функцией параллельных миров является функция следования, и никакое отображение не меняет порядок следования. Поэтому при отображении может меняться абсолютно все (пространство, время и т.д.), но всегда и для всех наблюдателей останется неизменным порядок событий (теория относительности). И любой закон, может быть проиллюстрирован на примере последовательных событий, между которыми нет других событий, ничего нет (квантовая механика).
Следствие 4 (философия)
Параллельные множества могут объединяться в подмножества. Наш мир является одним из таких подмножеств. Он является отражением других множеств и миров, но в тоже время является самодостаточным. Это приводит к противоречивому Следствию 1.
Философы давно обнаружили это противоречивую суть всех элементарных суждений нашего мира:
«Выскажем же это утверждение, а также и то, что существует ли единое или не существует, и оно и иное, как оказывается, по отношению к самим себе и друг к другу безусловно суть и не суть, кажутся и не кажутся.» (Платон, «Парменид»)

вторник, 22 марта 2016 г.

The proof (?) of Fermat's theorem

Mathematics considers natural numbers as points on a number line. I think it is a bit lopsided. Natural numbers are not just a series of points on a number line with an interval of 1. Let's try to build another series of intervals 3 ^ 0.5. All points of this series - the irrational numbers. But we still need the natural numbers to find the values of these points: 2 *3 ^ 0.5, 3 * 3 ^ 0.5, 4 * 3 ^ 0.5 ... .. Natural numbers - action. Natural numbers describe the algorithm of actions. Therefore, while solving the problem with natural numbers it is advisable to use the language of action and algorithms.

We’ll need an axiom. This axiom connects philosophy (epistemologywith mathematics.
Axiom: If there is an infinite number of examples of any relation on the infinite set, then all these examples can be combined (created)by one algorithm. This algorithm includes only pre-defined operations and relations for a given set, and corresponds to Gödel's incompleteness theorem.

Condition (1) determines an infinite number of examples of addition on the set if at least one example (of the decision) exists.

Theorem

f (x) - function corresponding to the following condition:
f (qx) = df (x) (1)
q, d - integers

A – the set which is given by the function f (x) (x - an integer). The addition operation is defined on this set (infinite number of simple solutions) only if there is n (n-integer nonzero number), for which:
f (n) + f (n + 1) = f (n + 2) (2)
f (n), f (n + 1), f (n + 2) - nonzero number

If the set has three consecutive numbers which satisfy the condition (2), the equation (3) has an infinite number of solutions:
f (a) + f (b) = f (c) (3)
a, b, c - integers.
f (a), f (b), f (c) - nonzero

If set A has three consecutive numbers which satisfy the condition (1),then set A is not the solution of equation (3).

Proof:

If there is at least one solution (3), then subject to the condition (1)there will be an infinite number of solutions. Consequently, according to Axiom, there will exist an algorithm.

The algorithm should be based on pre-defined operations. On set A only successor function and multiplication operation are pre- defined. Incidentally, multiplication and addition are not connected on this set in a similar way as on the set of natural numbers.

Therefore, the parental trio must exist. For example: 1 + 2 = 3 3 ^ 2 + 4 ^ 2 = 5 ^ 2, 3 ^ 3 + 4 ^ 3 + 5 ^ 3 = 6 ^ 3
Conversely, if condition (1) is true and there is no parental trio, there are no solutions at all.

Corollary1
If set A which satisfies the condition (1) is a solution of equation (3) in a nonzero integer numbers, it has an infinite number of solutions, and has the solution in the form of three consecutive numbers (parental trio).

Corollary 2
The function g (x) = x ^ r (r> 2) satisfies the condition (1), but set A does not satisfy the condition (2). Therefore, the equation a ^ r + b ^ r = c ^ r (r> 2) has no solution in positive integers.

среда, 15 января 2014 г.

I know how to overcome the economic crisis (and I'm looking for a very small country for the experiment)



 
If you are interested in my theory, outlined in the MANIFESTO OF THE NEW ECONOMIC THEORY then I can write a book or an article for your order to be published in your journal.

In an economy which  is developing normally the balance is kept. The number of new jobs is the number of fired employees . But the balance is distroyed during the crisis, when there is a need for restructuring the economy. Unprofitable companies are closing rapidly , but the growth rate of viable firms   is limited. And the "natural" rate of growth may not be enough to compensate the dismissal , which caused the closure of loss-making companies . An imbalance , growing unemployment and social discontent appear..

It is possible to overcome this imbalance in two ways:
1)To provide the anti-crisis assistance for unprofitable companies  not to be closed.
2)To encourage t the company's profitability , so that they can grow faster .

Governments usually choose the first way to slow  down the growth of unemployment and reduce social discontent. But this method leads to slowing down of  restructuring and prevents recovery from the crisis.

All anti-crisis measures of governments  are aimed at closing a smaller number of companies , thus supporting weak companies. But  only strong enterprises can pay for this support, because only they have the money . Therefore, all measures taken by governments  are the transfer of outflow of resources  from strong to weak enterprises . Even if the government calls these measures economy stimulating  . For example, to reduce the discount rate is  such a measure, but it does not help to overcome the crisis .

The second method is preferable . Natural growth rate of successful companies in a crisis is not enough to employ all the citizens who lost their jobs with the closure of unprofitable companies. Therefore , the state must apply extraordinary measures to help the successful and growing companies to grow even faster.

F or  successful companies that receive private investment to  grow even faster "natural" market-based instruments are not enough. Additional extraordinary measure may be, for example , money issue " in reverse." In this case the government by printing money creates funds which are invested  in the most successful companies and businesses . Funds can be  controlled  both by  the state and private companies . But the criterion of success is to be the  only one - the profitability of these funds. Then the money will be invested only in the most successful projects and companies . And in this case, there will not be any  inflation, because a  long-term increase in turnover of funds  is stimulated .

But now the government s are  trying to mitigate the effects of the crisis and  are guided by erroneous Keynesian  theory, they use   monetary emission incorrectly. Due to this theory unprofitable structures are supported , that is why  the turnover increases only temporarily , and then the inflation comes t and the crisis will get even  worse .
In general, the correct principle of redistribution is reduced to the rule: money should  be receive d by those companies which are able to use it in the most effective way. That is, during the crisis , the government should stimulate the outflow of funds from less profitable to more profitable companies .



воскресенье, 1 декабря 2013 г.

... to help the most successful has proved that they can multiply the investment.







 

If you are interested in my theory, outlined in the MANIFESTO OF THE NEW ECONOMIC THEORY then I can write a book or an article for your order to be published in your journal.

Suppose that the government has resorted to printing money. Most often this is done in order to overcome any crisis. First, as a rule the most money is received by structures which need it most of all. That is, the structures that either do not add entropy, or do it in a minimal volume. Taking into account the subsequent inflation, it is hidden redistribution of entropy from those who know how to receive it, to those who can not.



But if you need to get out from under the collapse, who do you trust  your pick and other tools? Those who know how to use them and walk quite well, or those who have never used them and could barely walk? Of course, the money issue should be directed to the most successful projects and companies. No matter how paradoxical it may sound: to help the most successful has proved that they can multiply the investment. But in fact the opposite is reality- the state takes away the tools of those who would use them efficiently and gives them to those who can not. Can  you predict the effectiveness of such emissions?

They often  say about the impossibility of refusing to help unprofitable businesses because of the danger of rising unemployment and increasing social tensions. But then it is even more necessary to provide financial support to profitable businesses  so that they  can expand and create new jobs.

Entropy traps

 
So, to increase the entropy, it must first be reduced .However, if the level of entropy is minimal, then this is not possible. This condition will be called entropy trap. Its peculiarity is that to get out of it is impossible, relying on the natural course of events .Investors are looking for objects  to invest which will generate entropy, and thus they  do not invest those who have fallen in the trap and have extremely low freedom and almost no options. This is where  a state is needed .It can be said that overcoming such traps at different levels – is  one of the main objectives of the government. But it does not mean to help financially those who are in an entropy trap, people and businesses.  

Several factors can facilitate the way out of such traps. The first - to lower the threshold of investment. The higher the subjective idea of the acceptability of the standard of life is, the higher the threshold at which people can invest is. In contrast, the more modest consumer appetite is, the less money is spent, the lower the threshold at which to start investing is. The volume of investment is increasing and the economy is growing.
Now stimulation of demand is considered to be the main task of the state  in the way out from the crisis. One more bought sausage, umbrella, hat ....All money should be included in the consumer turnover .As a result, the economy has not a single chance to break out this vicious circle, like a squirrel in a wheel. 

It is necessary to break this cycle, to pull out part of the entropy, some of the money from this turnover, which is predetermined, and in which there is some uncertainty. And you have to take a chance ... investment - always a risk, but without it there is no uncertainty, no uncertainty- no entropy, no freedom and no development. Money torn from the consumer race  is free money.

суббота, 2 ноября 2013 г.

Promotion of uniform economic growth should be prohibited, as extremist



 

If you are interested in my theory, outlined in the MANIFESTO OF THE NEW ECONOMIC THEORY then I can write a book or an article for your order to be published in your journal.


"The role of public opinion in governing a state is increasing. But to use public opinion in managing economic processes now, would be equal to economic suicide. This is not surprising because all the media assess economic processes and actions of politicians in terms of a uniform increase in GDP, and justice is assessed in terms of equal distribution of income.


Then public opinion affects the action of politicians, and in the end it leads to economic crises. As methods of influence in the economy were not so sophisticated and effective, misconceptions about the economic processes could not cause any great harm, but now these erroneous views can be fatal. Therefore the economic ideology is a very important activity of the state .The basis of this ideology can be the following:


The uneven distribution of income - the force pushing forward the whole of  the society  People should love and appreciate their billionaires who are deprived of a normal life for the sake of prosperity of the whole society. 

Promotion of uniform economic growth should be prohibited, as extremist. False ideals of this growth, are pushing the government on monetary measures that prevent the normal development of the economy. And when the "monetary fog" dissipates, the crowds are demanding the resignation of governments, because they inspired with: the economic downturn is not natural, and there must be guilty. And  as it is known the guilty are to be punished.


Everything develops in cycles. Although, of course, the cycles may overlap .But the main idea of growth and development – freedom and comfort  should be sacrificed first, so that to get it at a higher level, and then ... again donate. The need to periodically sacrifice freedom and comfort,  must be understood and accepted. Just as the idea of uncertainty should be adopted. To move uniformly and predictably can lead only to slaughter, whereas the free development involves trial and error, ups and downs. 


Freedom is uncertainty in itself.


The desire to change something in the life of every citizen, in the activities of each organization should be cultivated.



There may not be economic development without deficit and sense of dissatisfaction.
Society should be able to continuously monitor key economic processes. Citizens should be freely informed about change in the following parameters: the amount of money supply, inflation, hidden inflation, the profitability of enterprises and industries. And you should forget about the GDP.


And to sum it up: you have to do away with the dominant consumer ideology of gradual and smooth consumption of more and more products, without risk, uncertainty, without ups and downs, without freedom."